free-content
HomeFree Content Periodic Table Fluorine  

Fluorine


<< back to Periodic Table
My Saved Article
Atomic Number:9Atomic Symbol:F
Atomic Weight:18.999840Electron Configuration:2-7
Shells:2,7Filling Orbital:2p5
Melting Point:-219.62oCBoiling Point:-188.14oC
Uses:Toothpaste, refrigerant and other chloroflurocarbons (CFC)

History

(L. and F. fluere, flow or flux) In 1529, Georigius Agricola described the use of fluorspar as a flux, and as early as 1670 Schwandhard found that glass was etched when exposed to fluorspar treated with acid. Scheele and many later investigators, including Davy, Gay-Lussac, Lavoisier, and Thenard, experimented with hydrofluoric acid, some experiments ending in tragedy.

The element was finally isolated in 1866 by Henry Moissan of France after nearly 74 years of continuous effort.

Properties

Fluorine is the most electronegative and reactive of all elements. It is a pale yellow, corrosive gas, which reacts with most organic and inorganic substances. Finely divided metals, glass, ceramics, carbon, and even water burn in fluorine with a bright flame.

Until World War II, there was no commercial production of elemental fluorine. The nuclear bomb project and nuclear energy applications, however, made it necessary to produce large quantities.

Uses

Fluorine and its compounds are used in producing uranium (from the hexafluoride) and more than 100 commercial fluorochemicals, including many well known high-temperature plastics. Hydrofluoric acid etches the glass of light bulbs, etc. Fluorochlorohydrocarbons are extensively used in air conditioning and refrigeration.

The presence of fluorine as a soluble fluoride in drinking water to the extent of 2 ppm may cause mottled enamel in teeth, when used by children acquiring permanent teeth; in smaller amounts, however, fluorides are added to water supplies to prevent dental cavities.

Elemental fluorine has been studied as a rocket propellant as it has an exceptionally high specific impulse value.

Compounds

One hypothesis says that fluorine can be substituted for hydrogen wherever it occurs in organic compounds, which could lead to an astronomical number of new fluorine compounds. Compounds of fluorine with rare gases have now been confirmed in fluorides of xenon, radon, and krypton.

Handling

Elemental fluorine and the fluoride ion are highly toxic. The free element has a characteristic pungent odor, detectable in concentrations as low as 20 ppb, which is below the safe working level. The recommended maximum allowable concentration for a daily 8-hour time-weighted exposure is 1 ppm.

Safe handling techniques enable the transport liquid fluorine by the ton.


1  Top
 

ABOUT SSL CERTIFICATES